Back to Search
Start Over
Untrained Metamaterial-Based Coded Aperture Imaging Optimization Model Based on Modified U-Net.
- Source :
- Remote Sensing; Mar2024, Vol. 16 Issue 5, p795, 15p
- Publication Year :
- 2024
-
Abstract
- Metamaterial-based coded aperture imaging (MCAI) is a forward-looking radar imaging technique based on wavefront modulation. The scattering coefficients of the target can resolve as an ill-posed inverse problem. Data-based deep-learning methods provide an efficient, but expensive, way for target reconstruction. To address the difficulty in collecting paired training data, an untrained deep radar-echo-prior-based MCAI (DMCAI) optimization model is proposed. DMCAI combines the MCAI model with a modified U-Net for predicting radar echo. A joint loss function based on deep-radar echo prior and total variation is utilized to optimize network weights through back-propagation. A target reconstruction strategy by alternatively using the imaginary and real part of the radar echo signal (STAIR) is proposed to solve the DMCAI. It makes the target reconstruction task turn into an estimation from an input image by the U-Net. Then, the optimized weights serve as a parametrization that bridges the input image and the target. The simulation and experimental results demonstrate the effectiveness of the proposed approach under different SNRs or compression measurements. [ABSTRACT FROM AUTHOR]
- Subjects :
- OPTICAL apertures
INVERSE problems
SPECTRAL imaging
RADAR
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 175986646
- Full Text :
- https://doi.org/10.3390/rs16050795