Back to Search Start Over

Performance Evaluation of Printable Carbon‐Based Perovskite Solar Cells Infiltrated with Reusable CsPbI3:EuCl3 and Standard AVA‐MAPbI3.

Authors :
Valastro, Salvatore
Calogero, Gaetano
Smecca, Emanuele
Bongiorno, Corrado
Arena, Valentina
Mannino, Giovanni
Deretzis, Ioannis
Fisicaro, Giuseppe
La Magna, Antonino
Alberti, Alessandra
Source :
Solar RRL; Mar2024, Vol. 8 Issue 5, p1-11, 11p
Publication Year :
2024

Abstract

Hole‐transporting layer‐free mesoporous carbon (mC) architectures represent a printable, low‐cost, and stable solution for the future commercialization of perovskite solar cells (PSCs). CsPbI3 perovskite is attracting attention for its inorganic structure, which yields higher structural stability compared to hybrid counterparts and allows reversibility of its photoactive phase. Here the photovoltaic performance of large‐area (144 mm2) devices infiltrated with CsPbI3:EuCl3 is systematically evaluated, using AVA‐MAPbI3 mC‐PSCs as a reference. Measured and simulated J–V curves acquired at various scan rates show a significantly reduced hysteresis for Eu‐doped CsPbI3 with respect to AVA‐MAPbI3 mC‐PSCs. The synergic comparison between experiments and simulations reveals the complex interplay between ionic and electronic charges in the two mC‐PSCs, supporting the argument that cation migration is suppressed in CsPbI3:EuCl3. This also agrees with steady‐state photoconversion efficiency measured and simulated at fixed bias, which is constant over time in CsPbI3:EuCl3, contrary to what occurs in AVA‐MAPbI3 where a decay arises from enhanced ionic migration. In addition, CsPbI3:EuCl3 mC‐PSCs maintain their initial efficiency up to 250 h at 55 °C under continuous illumination during maximum power point tracking measurements. The possibility of reusing the CsPbI3:EuCl3 mC‐PSCs multiple times is demonstrated, pointing out the superiority of this inorganic perovskite in terms of sustainability. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
SOLAR cells
PEROVSKITE

Details

Language :
English
ISSN :
2367198X
Volume :
8
Issue :
5
Database :
Complementary Index
Journal :
Solar RRL
Publication Type :
Academic Journal
Accession number :
175946422
Full Text :
https://doi.org/10.1002/solr.202300944