Back to Search
Start Over
Axial–equatorial equilibrium in substituted cyclohexanes: a DFT perspective on a small but complex problem.
- Source :
- Physical Chemistry Chemical Physics (PCCP); 3/14/2024, Vol. 26 Issue 10, p8094-8105, 12p
- Publication Year :
- 2024
-
Abstract
- In Chemistry, complexity is not necessarily associated to large systems, as illustrated by the textbook example of axial–equatorial equilibrium in mono-substituted cyclohexanes. The difficulty in modelling such a simple isomerization is related to the need for reproducing the delicate balance between two forces, with opposite effects, namely the attractive London dispersion and the repulsive steric interactions. Such balance is a stimulating challenge for density-functional approximations and it is systematically explored here by considering 20 mono-substituted cyclohexanes. In comparison to highly accurate CCSD(T) reference calculations, their axial–equatorial equilibrium is studied with a large set of 48 exchange–correlation approximations, spanning from semilocal to hybrid to more recent double hybrid functionals. This dataset, called SAV20 (as Steric A-values for 20 molecules), allows to highlight the difficulties encountered by common and more original DFT approaches, including those corrected for dispersion with empirical potentials, the 6-31G*-ACP model, and our cost-effective PBE-QIDH/DH-SVPD protocol, in modeling these challenging interactions. Interestingly, the performance of the approaches considered in this contribution on the SAV20 dataset does not correlate with that obtained with other more standard datasets, such as S66, IDISP or NC15, thus indicating that SAV20 covers physicochemical features not already considered in previous noncovalent interaction benchmarks. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14639076
- Volume :
- 26
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Physical Chemistry Chemical Physics (PCCP)
- Publication Type :
- Academic Journal
- Accession number :
- 175877383
- Full Text :
- https://doi.org/10.1039/d3cp06141h