Back to Search
Start Over
Non-Uniformly Weighted Multisource Domain Adaptation Network For Fault Diagnosis Under Varying Working Conditions.
- Source :
- Neural Processing Letters; Apr2024, Vol. 56 Issue 2, p1-25, 25p
- Publication Year :
- 2024
-
Abstract
- Most transfer learning-based fault diagnosis methods learn diagnostic information from the source domain to enhance performance in the target domain. However, in practical applications, usually there are multiple available source domains, and relying on diagnostic information from only a single source domain limits the transfer performance. To this end, a non-uniformly weighted multisource domain adaptation network is proposed to address the above challenge. In the proposed method, an intra-domain distribution alignment strategy is designed to eliminate multi-domain shifts and align each pair of source and target domains. Furthermore, a non-uniform weighting scheme is proposed for measuring the importance of different sources based on the similarity between the source and target domains. On this basis, a weighted multisource domain adversarial framework is designed to enhance multisource domain adaptation performance. Numerous experimental results on three datasets validate the effectiveness and superiority of the proposed method. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 13704621
- Volume :
- 56
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Neural Processing Letters
- Publication Type :
- Academic Journal
- Accession number :
- 175837812
- Full Text :
- https://doi.org/10.1007/s11063-024-11568-2