Back to Search Start Over

Non-Uniformly Weighted Multisource Domain Adaptation Network For Fault Diagnosis Under Varying Working Conditions.

Authors :
Zhang, Hongliang
Zhang, Yuteng
Wang, Rui
Pan, Haiyang
Chen, Bin
Source :
Neural Processing Letters; Apr2024, Vol. 56 Issue 2, p1-25, 25p
Publication Year :
2024

Abstract

Most transfer learning-based fault diagnosis methods learn diagnostic information from the source domain to enhance performance in the target domain. However, in practical applications, usually there are multiple available source domains, and relying on diagnostic information from only a single source domain limits the transfer performance. To this end, a non-uniformly weighted multisource domain adaptation network is proposed to address the above challenge. In the proposed method, an intra-domain distribution alignment strategy is designed to eliminate multi-domain shifts and align each pair of source and target domains. Furthermore, a non-uniform weighting scheme is proposed for measuring the importance of different sources based on the similarity between the source and target domains. On this basis, a weighted multisource domain adversarial framework is designed to enhance multisource domain adaptation performance. Numerous experimental results on three datasets validate the effectiveness and superiority of the proposed method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13704621
Volume :
56
Issue :
2
Database :
Complementary Index
Journal :
Neural Processing Letters
Publication Type :
Academic Journal
Accession number :
175837812
Full Text :
https://doi.org/10.1007/s11063-024-11568-2