Back to Search Start Over

Enhancing detection of topological order by local error correction.

Authors :
Cong, Iris
Maskara, Nishad
Tran, Minh C.
Pichler, Hannes
Semeghini, Giulia
Yelin, Susanne F.
Choi, Soonwon
Lukin, Mikhail D.
Source :
Nature Communications; 2/23/2024, Vol. 15 Issue 1, p1-14, 14p
Publication Year :
2024

Abstract

The exploration of topologically-ordered states of matter is a long-standing goal at the interface of several subfields of the physical sciences. Such states feature intriguing physical properties such as long-range entanglement, emergent gauge fields and non-local correlations, and can aid in realization of scalable fault-tolerant quantum computation. However, these same features also make creation, detection, and characterization of topologically-ordered states particularly challenging. Motivated by recent experimental demonstrations, we introduce a paradigm for quantifying topological states—locally error-corrected decoration (LED)—by combining methods of error correction with ideas of renormalization-group flow. Our approach allows for efficient and robust identification of topological order, and is applicable in the presence of incoherent noise sources, making it particularly suitable for realistic experiments. We demonstrate the power of LED using numerical simulations of the toric code under a variety of perturbations. We subsequently apply it to an experimental realization, providing new insights into a quantum spin liquid created on a Rydberg-atom simulator. Finally, we extend LED to generic topological phases, including those with non-abelian order. Detection of topological phases in experiments is challenging, especially in the presence of incoherent noise. Cong et al. introduce a novel method combining error correction and renormalization-group flow and apply it to characterization of quantum spin liquid phases realized in a Rydberg-atom simulator. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
175830762
Full Text :
https://doi.org/10.1038/s41467-024-45584-6