Back to Search Start Over

Heat transfer analysis of Carreau–Yasuda nanofluid flow with variable thermal conductivity and quadratic convection.

Authors :
Akbar, Asia Ali
Awan, Aziz Ullah
Nadeem, Sohail
Ahammad, N Ameer
Raza, Nauman
Oreijah, Mowffaq
Guedri, Kamel
Allahyani, Seham Ayesh
Source :
Journal of Computational Design & Engineering; Feb2024, Vol. 11 Issue 1, p99-109, 11p
Publication Year :
2024

Abstract

Brownian motions and Thermophoresis are primary sources of nanoparticle diffusion in nanofluids, having substantial implications for the thermo-physical characteristics of nanofluids. With such a high need, the 2D, laminar MHD (Magnetohydrodynamic) quadratic convective stream of Carreau–Yasuda nano liquid across the stretchy sheet has been reported. The flow is caused by surface stretching. The principal purpose of this extensive study is to enhance thermal transmission. The effects of variable thermal conductivity and heat source are considered as well. The governing boundary layer equations are transmuted using similarity parameters into a series of non-linear ODEs (ordinary differential equations). The bvp4c algorithm is adopted to fix the translated system numerically. The effects of prominent similarity variables over the temperature, velocity and concentration field are graphically visualized and verified via tables. It explored that fluid's speed diminishes for the more significant inputs of the magnetic coefficient, Brownian motion coefficient and Prandtl number. The thermal efficiency is improved for larger values of thermophoretic constant, varying thermal conductance and heat-generating parameters. The concentration field has proved to be a decreasing function of nanofluid constants. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22884300
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Journal of Computational Design & Engineering
Publication Type :
Academic Journal
Accession number :
175801788
Full Text :
https://doi.org/10.1093/jcde/qwae009