Back to Search Start Over

Light-induced switching between singlet and triplet superconducting states.

Authors :
Gassner, Steven
Weber, Clara S.
Claassen, Martin
Source :
Nature Communications; 2/27/2024, Vol. 15 Issue 1, p1-11, 11p
Publication Year :
2024

Abstract

While the search for topological triplet-pairing superconductivity has remained a challenge, recent developments in optically stabilizing metastable superconducting states suggest a new route to realizing this elusive phase. Here, we devise a testable theory of competing superconducting orders that permits ultrafast switching to an opposite-parity superconducting phase in centrosymmetric crystals with strong spin-orbit coupling. Using both microscopic and phenomenological models, we show that dynamical inversion symmetry breaking with a tailored light pulse can induce odd-parity (spin triplet) order parameter oscillations in a conventional even-parity (spin singlet) superconductor, which when driven strongly can send the system to a competing minimum in its free energy landscape. Our results provide new guiding principles for engineering unconventional electronic phases using light, suggesting a fundamentally non-equilibrium route toward realizing topological superconductivity. S. Gassner et al. propose using light pulses to drive a centrosymmetric s-wave superconductor with strong spin-orbit coupling into a metastable triplet p-wave superconductor with non-trivial topology. The two superconducting orders must be closely competing in equilibrium and the light pulse must break a generalized, dynamic form of inversion symmetry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
175797690
Full Text :
https://doi.org/10.1038/s41467-024-45949-x