Back to Search
Start Over
High crystalline quality homoepitaxial Si-doped β-Ga2O3(010) layers with reduced structural anisotropy grown by hot-wall MOCVD.
- Source :
- Journal of Vacuum Science & Technology: Part A-Vacuums, Surfaces & Films; Mar2024, Vol. 42 Issue 2, p1-9, 9p
- Publication Year :
- 2024
-
Abstract
- A new growth approach, based on the hot-wall metalorganic chemical vapor deposition concept, is developed for high-quality homoepitaxial growth of Si-doped single-crystalline β -Ga 2 O 3 layers on (010)-oriented native substrates. Substrate annealing in argon atmosphere for 1 min at temperatures below 600 ° C is proposed for the formation of epi-ready surfaces as a cost-effective alternative to the traditionally employed annealing process in oxygen-containing atmosphere with a time duration of 1 h at about 1000 ° C. It is shown that the on-axis rocking curve widths exhibit anisotropic dependence on the azimuth angle with minima for in-plane direction parallel to the [001] and maximum for the [100] for both substrate and layer. The homoepitaxial layers are demonstrated to have excellent structural properties with a β -Ga 2 O 3 (020) rocking curve full-widths at half-maximum as low as 11 arc sec, which is lower than the corresponding one for the substrates (19 arc sec), even for highly Si-doped (low 10 19 cm − 3 range) layers. Furthermore, the structural anisotropy in the layer is substantially reduced with respect to the substrate. Very smooth surface morphology of the epilayers with a root mean square roughness value of 0.6 nm over a 5 × 5 μ m 2 area is achieved along with a high electron mobility of 69 cm 2 V − 1 s − 1 at a free carrier concentration n = 1.9 × 10 19 cm − 3 . These values compare well with state-of-the-art parameters reported in the literature for β -Ga 2 O 3 (010) homoepitaxial layers with respective Si doping levels. Thermal conductivity of 17.4 W m − 1 K − 1 is determined along the [010] direction for the homoepitaxial layers at 300 K, which approaches the respective value of bulk crystal (20.6 W m − 1 K − 1 ). This result is explained by a weak boundary effect and a low dislocation density in the homoepitaxial layers. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 07342101
- Volume :
- 42
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Journal of Vacuum Science & Technology: Part A-Vacuums, Surfaces & Films
- Publication Type :
- Academic Journal
- Accession number :
- 175796170
- Full Text :
- https://doi.org/10.1116/6.0003424