Back to Search Start Over

Robust unfolding of MeV x-ray spectra from filter stack spectrometer data.

Authors :
Wong, C.-S.
Strehlow, J.
Broughton, D. P.
Luedtke, S. V.
Huang, C.-K.
Bogale, A.
Fitzgarrald, R.
Nedbailo, R.
Schmidt, J. L.
Schmidt, T. R.
Twardowski, J.
Van Pelt, A.
Alvarez, M. Alvarado
Junghans, A.
Mix, L. T.
Reinovsky, R. E.
Rusby, D. R.
Wang, Z.
Wolfe, B.
Albright, B. J.
Source :
Review of Scientific Instruments; Feb2024, Vol. 95 Issue 2, p1-12, 12p
Publication Year :
2024

Abstract

We present an inversion method capable of robustly unfolding MeV x-ray spectra from filter stack spectrometer (FSS) data without requiring an a priori specification of a spectral shape or arbitrary termination of the algorithm. Our inversion method is based upon the perturbative minimization (PM) algorithm, which has previously been shown to be capable of unfolding x-ray transmission data, albeit for a limited regime in which the x-ray mass attenuation coefficient of the filter material increases monotonically with x-ray energy. Our inversion method improves upon the PM algorithm through regular smoothing of the candidate spectrum and by adding stochasticity to the search. With these additions, the inversion method does not require a physics model for an initial guess, fitting, or user-selected termination of the search. Instead, the only assumption made by the inversion method is that the x-ray spectrum should be near a smooth curve. Testing with synthetic data shows that the inversion method can successfully recover the primary large-scale features of MeV x-ray spectra, including the number of x-rays in energy bins of several-MeV widths to within 10%. Fine-scale features, however, are more difficult to recover accurately. Examples of unfolding experimental FSS data obtained at the Texas Petawatt Laser Facility and the OMEGA EP laser facility are also presented. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00346748
Volume :
95
Issue :
2
Database :
Complementary Index
Journal :
Review of Scientific Instruments
Publication Type :
Academic Journal
Accession number :
175796099
Full Text :
https://doi.org/10.1063/5.0190679