Back to Search Start Over

Verification of image quality improvement of low-count bone scintigraphy using deep learning.

Authors :
Murata, Taisuke
Hashimoto, Takuma
Onoguchi, Masahisa
Shibutani, Takayuki
Iimori, Takashi
Sawada, Koichi
Umezawa, Tetsuro
Masuda, Yoshitada
Uno, Takashi
Source :
Radiological Physics & Technology; Mar2024, Vol. 17 Issue 1, p269-279, 11p
Publication Year :
2024

Abstract

To improve image quality for low-count bone scintigraphy using deep learning and evaluate their clinical applicability. Six hundred patients (training, 500; validation, 50; evaluation, 50) were included in this study. Low-count original images (75%, 50%, 25%, 10%, and 5% counts) were generated from reference images (100% counts) using Poisson resampling. Output (DL-filtered) images were obtained after training with U-Net using reference images as teacher data. Gaussian-filtered images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) to the reference image were calculated to determine image quality. Artificial neural network (ANN) value, bone scan index (BSI), and number of hotspots (Hs) were computed using BONENAVI analysis to assess diagnostic performance. Accuracy of bone metastasis detection and area under the curve (AUC) were calculated. PSNR and SSIM for DL-filtered images were highest in all count percentages. BONENAVI analysis values for DL-filtered images did not differ significantly, regardless of the presence or absence of bone metastases. BONENAVI analysis values for original and Gaussian-filtered images differed significantly at ≦25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for original and Gaussian-filtered images differed significantly at ≦10% counts, whereas ANN values did not. The accuracy of bone metastasis detection was highest for DL-filtered images in all count percentages; the AUC did not differ significantly. The deep learning method improved image quality and bone metastasis detection accuracy for low-count bone scintigraphy, suggesting its clinical applicability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18650333
Volume :
17
Issue :
1
Database :
Complementary Index
Journal :
Radiological Physics & Technology
Publication Type :
Academic Journal
Accession number :
175719747
Full Text :
https://doi.org/10.1007/s12194-023-00776-5