Back to Search Start Over

Applications of using connected vehicle data for pavement quality analysis.

Authors :
Mahlberg, Justin Anthony
Howell Li
Zachrisson, Björn
Mathew, Jijo K.
Bullock, Darcy M.
Source :
Frontiers in Future Transportation; 2024, p1-7, 7p
Publication Year :
2024

Abstract

Current quantitative methods to evaluate pavement conditions in the United States are most commonly focused on construction acceptance using the International Roughness Index (IRI). However, from an asset management perspective, qualitative visual inspection techniques are the most prevalent. Modern vehicles with factory-equipped sensors drive these roadways daily and can passively assess the condition of infrastructure at an accuracy level somewhere between qualitative assessment and rigorous construction acceptance techniques. This paper compares crowdsourced ride quality data with an industry standard inertial profiler on a 7-mile bi-directional construction zone. A linear correlation was performed on 14 miles of I-65 that resulted in an R2 of 0.7 and a p-value of <0.001, but with a modest fixed offset bias. The scalability of these techniques is illustrated with graphics characterizing IRI values obtained from 730,000 crowdsourced data segments over 5,800 miles of I-80 in April of 2022 and October 2022. This paper looks at the use of standard original equipment manufacturer (OEM) on-board sensor data from production vehicles to assess approximately 100 miles of roadway pavements before, during, and after construction. The completed construction projects observed IRI improvements of 10 in/mi to 100 in/mi. These results suggest that it is now possible to monitor pavement ride quality at a system level, even with a small proportion of connected vehicles (CV) providing roughness data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26735210
Database :
Complementary Index
Journal :
Frontiers in Future Transportation
Publication Type :
Academic Journal
Accession number :
175716138
Full Text :
https://doi.org/10.3389/ffutr.2023.1239744