Back to Search Start Over

Petrophysical properties identification and estimation of the Wufeng-Longmaxi shale gas reservoirs: a case study from South-West China.

Authors :
Kablan, Or Aimon Brou Koffi
Chen, Tongjun
Source :
Journal of Geophysics & Engineering; Feb2024, Vol. 21 Issue 1, p15-28, 14p
Publication Year :
2024

Abstract

Petrophysical properties are critical for shale gas reservoir characterization and simulation. The Wufeng-Longmaxi shale, in the south-eastern margin of the Sichuan Basin, is identified as a complex reservoir due to its variability in lithification and geological mechanisms. Thus, determining its characteristics is challenging. Based on wireline logs and pressure data analysis, a shale reservoir was identified, and petrophysical properties were described to obtain parameters to build a reservoir simulation model. The properties include shale volume, sand porosity, net reservoir thickness, total and effective porosities, and water saturation. Total and effective porosities were calculated using density method. Shale volume was estimated by applying the Clavier equation to gamma-ray responses. Sand porosity and net reservoir thickness were evaluated using the Thomas–Stieber model, and the Simandoux equation was used to compute water saturation. The results indicate that the reservoir is characterized by a relatively low porosity and high shale content, with shale unequally distributed in its laminated form (approximately 75%), dispersed (about 20%), and structural form (5%). This research workflow can efficiently evaluate shale reservoir parameters and provide a reliable approach for future reservoir development and fracture identification. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17422132
Volume :
21
Issue :
1
Database :
Complementary Index
Journal :
Journal of Geophysics & Engineering
Publication Type :
Academic Journal
Accession number :
175706603
Full Text :
https://doi.org/10.1093/jge/gxad088