Back to Search Start Over

Probabilistic seasonal forecasts of North Atlantic atmospheric circulation using complex systems modelling and comparison with dynamical models.

Authors :
Sun, Yiming
Simpson, Ian
Wei, Hua‐Liang
Hanna, Edward
Source :
Meteorological Applications; Jan/Feb2024, Vol. 31 Issue 1, p1-22, 22p
Publication Year :
2024

Abstract

Dynamical seasonal forecast models are improving with time but tend to underestimate the amplitude of atmospheric circulation variability and to have lower skill in predicting summer variability than in winter. Here, we construct Nonlinear AutoRegressive Moving Average models with eXogenous inputs (NARMAX) to develop the analysis of drivers of North Atlantic atmospheric circulation and jet‐stream variability, focusing on the East Atlantic (EA) and Scandinavian (SCA) patterns as well as the North Atlantic Oscillation (NAO) index. New time series of these indices are developed from empirical orthogonal function (EOF) analysis. Geopotential height data from the ERA5 reanalysis are used to generate the EOFs. Sets of predictors with known associations with these drivers are developed and used to formulate a sliding‐window NARMAX model. This model demonstrates a high degree of predictive accuracy, as indicated by its average correlation coefficients over the testing period (2006–2021): 0.78 for NAO, 0.83 for EA and 0.68 for SCA. In comparison, the SEAS5 and GloSea5 dynamical forecast models exhibit lower correlations with observed circulation changes: for NAO, the correlation coefficients are 0.51 for SEAS5 and 0.34 for GloSea5, for EA they are 0.15 and 0.09, respectively, and for SCA, they are 0.28 and 0.24, respectively. Comparison of NARMAX predictions with forecasts and hindcasts from the SEAS5 and GloSea5 models highlights areas where NARMAX can be used to help improve seasonal forecast skill and inform the development of dynamical models, especially in the case of summer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13504827
Volume :
31
Issue :
1
Database :
Complementary Index
Journal :
Meteorological Applications
Publication Type :
Academic Journal
Accession number :
175704066
Full Text :
https://doi.org/10.1002/met.2178