Back to Search Start Over

A Helfrich functional for compact surfaces in $\mathbb{C}P^{2}$.

Authors :
Yao, Zhongwei
Source :
Glasgow Mathematical Journal; Jan2024, Vol. 66 Issue 1, p36-50, 15p
Publication Year :
2024

Abstract

Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$. In this paper, we consider the Helfrich-type functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$ , where $\lambda _{1}, \lambda _{2}\in \mathbb{R}$ with $\lambda _{1}\geqslant 0$ , $H$ and $C$ are respectively the mean curvature vector and the Kähler function of $M$ in $\mathbb{C}P^{2}$. The critical surfaces of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ are called Helfrich surfaces. We compute the first variation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ and classify the homogeneous Helfrich tori in $\mathbb{C}P^{2}$. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00170895
Volume :
66
Issue :
1
Database :
Complementary Index
Journal :
Glasgow Mathematical Journal
Publication Type :
Academic Journal
Accession number :
175678522
Full Text :
https://doi.org/10.1017/S0017089523000320