Back to Search
Start Over
A Helfrich functional for compact surfaces in $\mathbb{C}P^{2}$.
- Source :
- Glasgow Mathematical Journal; Jan2024, Vol. 66 Issue 1, p36-50, 15p
- Publication Year :
- 2024
-
Abstract
- Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$. In this paper, we consider the Helfrich-type functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$ , where $\lambda _{1}, \lambda _{2}\in \mathbb{R}$ with $\lambda _{1}\geqslant 0$ , $H$ and $C$ are respectively the mean curvature vector and the Kähler function of $M$ in $\mathbb{C}P^{2}$. The critical surfaces of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ are called Helfrich surfaces. We compute the first variation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ and classify the homogeneous Helfrich tori in $\mathbb{C}P^{2}$. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori. [ABSTRACT FROM AUTHOR]
- Subjects :
- VECTOR valued functions
PROJECTIVE planes
TORUS
Subjects
Details
- Language :
- English
- ISSN :
- 00170895
- Volume :
- 66
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Glasgow Mathematical Journal
- Publication Type :
- Academic Journal
- Accession number :
- 175678522
- Full Text :
- https://doi.org/10.1017/S0017089523000320