Back to Search Start Over

Exploring the Efficacy of Amine-Free Anti-Stripping Agent in Improving Asphalt Characteristics.

Authors :
Al-Saffar, Zaid Hazim
Mohamed Hasan, Heja Ghazi
Oleiwi Aletba, Salam Ridha
Source :
Infrastructures; Feb2024, Vol. 9 Issue 2, p25, 16p
Publication Year :
2024

Abstract

This research addresses the significant challenge posed by early water damage in highway asphalt pavement, a critical concern affecting pavement service performance. To counteract this issue, the utilization of anti-stripping agents in asphalt is explored as a highly effective technical intervention. In this investigation, a carefully selected amine-free additive was employed to modify the asphalt binder. A comprehensive array of physical and rheological tests, covering aspects such as storage stability, penetration, softening point, ductility, elastic recovery, rolling thin-film oven, retained penetration, the ductility of residue, and rotational viscometer assessments, were conducted to examine the multifaceted impact of the anti-stripping agent on the asphalt binder. Additionally, we assessed the asphalt mixture's sensitivity to moisture through Marshall stability tests after conditioning for 40 min and 24 h, followed by an enhanced immersion test and moisture susceptibility measurement. The results reveal a nuanced interplay of chemical and physical mechanisms influencing the behavior of the asphalt binder. Notably, the incorporation of an anti-stripping agent at a concentration of 0.25–0.5% (by weight of asphalt binder) led to a substantial improvement in the tensile strength ratio (TSR) to 94.9%, a noteworthy enhancement compared to the 80.6% observed with virgin asphalt mixture. Furthermore, the retained stability index (RSI) exhibited a remarkable increase to 98.1%, surpassing the 87.6% recorded for virgin asphalt. This study not only provides crucial insights into the intricate dynamics of asphalt binder performance but also emphasizes the pivotal role of anti-stripping agents in augmenting the structural integrity and resilience of asphalt pavement. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24123811
Volume :
9
Issue :
2
Database :
Complementary Index
Journal :
Infrastructures
Publication Type :
Academic Journal
Accession number :
175669222
Full Text :
https://doi.org/10.3390/infrastructures9020025