Back to Search Start Over

Optimizing IoT intrusion detection system: feature selection versus feature extraction in machine learning.

Authors :
Li, Jing
Othman, Mohd Shahizan
Chen, Hewan
Yusuf, Lizawati Mi
Source :
Journal of Big Data; 2/24/2024, Vol. 11 Issue 1, p1-44, 44p
Publication Year :
2024

Abstract

Internet of Things (IoT) devices are widely used but also vulnerable to cyberattacks that can cause security issues. To protect against this, machine learning approaches have been developed for network intrusion detection in IoT. These often use feature reduction techniques like feature selection or extraction before feeding data to models. This helps make detection efficient for real-time needs. This paper thoroughly compares feature extraction and selection for IoT network intrusion detection in machine learning-based attack classification framework. It looks at performance metrics like accuracy, f1-score, and runtime, etc. on the heterogenous IoT dataset named Network TON-IoT using binary and multiclass classification. Overall, feature extraction gives better detection performance than feature selection as the number of features is small. Moreover, extraction shows less feature reduction compared with that of selection, and is less sensitive to changes in the number of features. However, feature selection achieves less model training and inference time compared with its counterpart. Also, more space to improve the accuracy for selection than extraction when the number of features changes. This holds for both binary and multiclass classification. The study provides guidelines for selecting appropriate intrusion detection methods for particular scenarios. Before, the TON-IoT heterogeneous IoT dataset comparison and recommendations were overlooked. Overall, the research presents a thorough comparison of feature reduction techniques for machine learning-driven intrusion detection in IoT networks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21961115
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Journal of Big Data
Publication Type :
Academic Journal
Accession number :
175636129
Full Text :
https://doi.org/10.1186/s40537-024-00892-y