Back to Search Start Over

Boosting the catalytic performance of Al2O3-supported Pd catalysts by introducing CeO2 promoters.

Authors :
Han, Xiaoxiao
Zhang, Lingling
Zhang, Rui
Wang, Ke
Wang, Xiao
Li, Bo
Tao, Zhiping
Song, Shuyan
Zhang, Hongjie
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry; 2/21/2024, Vol. 53 Issue 7, p3290-3295, 6p
Publication Year :
2024

Abstract

Maintaining the stability of noble metals is the key to the long-term stability of supported catalysts. In response to the instability of noble metal species at high temperatures, we developed a synergistic strategy of dual oxide supports. By designing and constructing ceria components with small sizes, we have achieved unity in the ability of catalytic materials to supply oxygen and stabilize metal species. In this study, we prepared Al<subscript>2</subscript>O<subscript>3</subscript>-CeO<subscript>2</subscript>-Pd (AlCePd) catalysts containing trace amounts of Ce through the hydrolysis of cerium acetate, which achieved 100% CO conversion at 160 °C. More importantly, the activity remained at its initial 100% in the long-term durability testing, demonstrating the high stability of AlCePd. In contrast, the CO conversion of the CeO<subscript>2</subscript>-Pd (CePd) catalyst decreased from 100% to 54% within 3 h. Through comprehensive studies, we found that this excellent catalytic performance stems from the stabilizing effect of an alumina support and the possible reverse oxygen spillover effect of small-sized ceria components, where small-sized ceria components provide active oxygen for independent Pd species, making it possible for the CO adsorbed on Pd to react with this oxygen species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
53
Issue :
7
Database :
Complementary Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
175417057
Full Text :
https://doi.org/10.1039/d3dt03676f