Back to Search Start Over

Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting.

Authors :
Hou, Mengyun
Zheng, Lirong
Zhao, Di
Tan, Xin
Feng, Wuyi
Fu, Jiantao
Wei, Tianxin
Cao, Minhua
Zhang, Jiatao
Chen, Chen
Source :
Nature Communications; 2/13/2024, Vol. 15 Issue 1, p1-13, 13p
Publication Year :
2024

Abstract

The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo<subscript>2</subscript>C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo<subscript>2</subscript>C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis. The comprehensive understanding of complex catalytic mechanisms under harsh reaction conditions for efficient bifunctional single-atom electrocatalysts remain challenging. Here the authors found microenvironment reconsitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
175409800
Full Text :
https://doi.org/10.1038/s41467-024-45533-3