Back to Search
Start Over
On stable solutions of a weighted elliptic equation involving the fractional Laplacian.
- Source :
- Mathematical Methods in the Applied Sciences; Mar2024, Vol. 47 Issue 4, p2717-2727, 11p
- Publication Year :
- 2024
-
Abstract
- In this paper, we study the following fractional Choquard equation with weight (−Δ)su=1|x|N−α∗h(x)|u|ph(x)|u|p−2uinℝN,$$ {\left(-\Delta \right)}&#x0005E;su&#x0003D;\left(\frac{1}{{\left&#x0007C;x\right&#x0007C;}&#x0005E;{N-\alpha }}\ast h(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;p\right)h(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{p-2}u\kern0.5em \mathrm{in}\kern0.5em {\mathrm{\mathbb{R}}}&#x0005E;N, $$where 0<s<1,N>2s,p>2,α>0$$ 0<s<1,N>2s,p>2,\alpha >0 $$ and h$$ h $$ is a positive weight function satisfying h(x)≥C|x|a$$ h(x)\ge C{\left&#x0007C;x\right&#x0007C;}&#x0005E;a $$ at infinity, for some a≥0$$ a\ge 0 $$. We establish, in this paper, a Liouville type theorem saying that if maxN−4s−2a,0<α<N,$$ \max \left(N-4s-2a,0\right)<\alpha <N, $$then the above equation has no nontrivial stable solution. Our result, in particular, extends the result in [Le, Phuong. Bull. Aust. Math. Soc. 102 (2020), no. 3, 471–478.] from the Laplace operator to the fractional Laplacian. [ABSTRACT FROM AUTHOR]
- Subjects :
- ELLIPTIC equations
LAPLACIAN operator
LIOUVILLE'S theorem
MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 01704214
- Volume :
- 47
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Mathematical Methods in the Applied Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 175388186
- Full Text :
- https://doi.org/10.1002/mma.9774