Back to Search Start Over

Effect of Time and Voltage on the Electrophoresis Deposition of Zinc Oxide Thin Films for Photovoltaic Applications.

Authors :
Nunes, Vanja Fontenele
Graça, Manuel Pedro Fernandes
Hammami, Imen
Almeida, Ana Fabíola Leite
Freire, Francisco Nivaldo Aguiar
Source :
Applied Sciences (2076-3417); Feb2024, Vol. 14 Issue 3, p1202, 13p
Publication Year :
2024

Abstract

Electrophoretic deposition is a straightforward, environmentally friendly, and cost-effective technique for depositing and synthesizing nanomaterials, particularly nanofilms of semiconductors. Key parameters in electrophoresis include deposition time and voltage. Zinc oxide, a semiconductor of significant interest in solar energy research, possesses favorable characteristics, notably, a band gap value of approximately 3.33 eV. In the realm of dye-sensitized solar cells, which represent the third generation of solar cells, zinc oxide has emerged as a compelling choice for a photoanode. This study focused on depositing thin films of zinc oxide through electrophoresis and applying them as photoanodes in dye solar cells. The results demonstrated that the electrodeposited films exhibited good reflectance in the visible spectrum (~60–90%), a band gap energy of 3.28 eV, and an incident photon conversion efficiency of approximately 4.48% for the electrodeposited film at 80 V for 5 min. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
3
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
175372444
Full Text :
https://doi.org/10.3390/app14031202