Back to Search Start Over

Construction and catalytic effects of solvent- and metal(II)-dependent products: the process of transformation of 0D structures into 3D structures.

Authors :
Kim, Gyeongmin
Han, Jihun
Kim, Dongwon
Jung, Ok-Sang
Source :
CrystEngComm; 2/21/2024, Vol. 26 Issue 7, p918-925, 8p
Publication Year :
2024

Abstract

Self-assembly of Zn(NO<subscript>3</subscript>)<subscript>2</subscript> with tris(2-(isoquinolin-5-yloxy)ethyl)amine (L) as a C<subscript>3</subscript>-symmetric tridentate N-donor in a mixture of dioxane and acetonitrile gives rise to [NO<subscript>3</subscript>@Zn<subscript>3</subscript>(NO<subscript>3</subscript>)<subscript>5</subscript>L<subscript>2</subscript>]·2CH<subscript>3</subscript>CN in the form of crystals of sandwich-shaped cages encapsulating a nitrate, whereas the same self-assembly reaction in a different mixture, benzene and ethanol, produces [Zn(NO<subscript>3</subscript>)L(H<subscript>2</subscript>O)]NO<subscript>3</subscript>·H<subscript>2</subscript>O in the form of crystals of 3D networks with cml {4,6<superscript>2</superscript>}<subscript>2</subscript>{4<superscript>2</superscript>,6<superscript>10</superscript>,8<superscript>3</superscript>} topology. The most interesting feature is the transformation of [NO<subscript>3</subscript>@Zn<subscript>3</subscript>(NO<subscript>3</subscript>)<subscript>5</subscript>L<subscript>2</subscript>]·2CH<subscript>3</subscript>CN crystals into [Zn(NO<subscript>3</subscript>)L(H<subscript>2</subscript>O)]NO<subscript>3</subscript>·H<subscript>2</subscript>O crystals in ethanol. A significant difference in heterogeneous transesterification catalysis between the two species is observed. On the other hand, self-assembly of Co(NO<subscript>3</subscript>)<subscript>2</subscript> with L gives rise to 3D networks, [Co(NO<subscript>3</subscript>)L(H<subscript>2</subscript>O)]NO<subscript>3</subscript>·H<subscript>2</subscript>O, whereas self-assembly of Ni(NO<subscript>3</subscript>)<subscript>2</subscript> and Cu(NO<subscript>3</subscript>)<subscript>2</subscript> with L produces sandwich-type cages, [NO<subscript>3</subscript>@Ni<subscript>3</subscript>(NO<subscript>3</subscript>)<subscript>3</subscript>L<subscript>2</subscript>(H<subscript>2</subscript>O)<subscript>6</subscript>]2NO<subscript>3</subscript>·C<subscript>2</subscript>H<subscript>5</subscript>OH·C<subscript>6</subscript>H<subscript>6</subscript> and [NO<subscript>3</subscript>@Cu<subscript>3</subscript>(NO<subscript>3</subscript>)<subscript>5</subscript>L<subscript>2</subscript>(C<subscript>2</subscript>H<subscript>5</subscript>OH)]·C<subscript>2</subscript>H<subscript>5</subscript>OH·2C<subscript>6</subscript>H<subscript>6</subscript>, respectively, with the latter notably showing heterogeneous catechol oxidation catalytic effects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14668033
Volume :
26
Issue :
7
Database :
Complementary Index
Journal :
CrystEngComm
Publication Type :
Academic Journal
Accession number :
175366272
Full Text :
https://doi.org/10.1039/d3ce01298k