Back to Search
Start Over
Regulating the structure of crosslinked polyethylene and its application in ultra‐high voltage cables.
- Source :
- Polymer Engineering & Science; Feb2024, Vol. 64 Issue 2, p496-505, 10p
- Publication Year :
- 2024
-
Abstract
- The crystallinity of polyethylene has been extensively studied, but in situ experiments designed to investigate the crystallization of PE and XLPE have hardly been discussed. In this work, the crystallization behavior of PE and XLPE was investigated by designing in situ crystallization observation experiments. We have compared the crystallinity, crosslinking, viscosity properties, and gas byproducts of different XLPE insulating materials. COMSOL simulations demonstrate that the DTAP and DTBP crosslinker initiated crosslinks have better insulating properties and cable stability than the DTBC and DTBTMC crosslinkers. The formation of an insulation layer initiated by the DTAP crosslinker is beneficial for improving the breakdown strength, processing performance, and stable operation of cables. Our work is of great significance for understanding the crystallinity of XLPE and determining the correct crosslinker. Highlights: In situ crystallization observation of PE and XLPE.Simulation of ultra‐high voltage cables.Finite element analysis.Investigation of gas byproducts in XLPE. [ABSTRACT FROM AUTHOR]
- Subjects :
- POLYETHYLENE
INSULATING materials
VOLTAGE
CABLES
CRYSTALLINITY
CRYSTALLIZATION
Subjects
Details
- Language :
- English
- ISSN :
- 00323888
- Volume :
- 64
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Polymer Engineering & Science
- Publication Type :
- Academic Journal
- Accession number :
- 175365881
- Full Text :
- https://doi.org/10.1002/pen.26561