Back to Search Start Over

Deep Learning for Discrimination of Hypertrophic Cardiomyopathy and Hypertensive Heart Disease on MRI Native T1 Maps.

Authors :
Wang, Zi‐Chen
Fan, Zhang‐Zhengyi
Liu, Xi‐Yuan
Zhu, Ming‐Jie
Jiang, Shan‐Shan
Tian, Song
Chen, Bing‐Hua
Wu, Lian‐Ming
Source :
Journal of Magnetic Resonance Imaging; Mar2024, Vol. 59 Issue 3, p837-848, 12p
Publication Year :
2024

Abstract

Background: Native T1 and radiomics were used for hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) differentiation previously. The current problem is that global native T1 remains modest discrimination performance and radiomics requires feature extraction beforehand. Deep learning (DL) is a promising technique in differential diagnosis. However, its feasibility for discriminating HCM and HHD has not been investigated. Purpose: To examine the feasibility of DL in differentiating HCM and HHD based on T1 images and compare its diagnostic performance with other methods. Study Type: Retrospective. Population: 128 HCM patients (men, 75; age, 50 years ± 16) and 59 HHD patients (men, 40; age, 45 years ± 17). Field Strength/Sequence: 3.0T; Balanced steady‐state free precession, phase‐sensitive inversion recovery (PSIR) and multislice native T1 mapping. Assessment: Compare HCM and HHD patients baseline data. Myocardial T1 values were extracted from native T1 images. Radiomics was implemented through feature extraction and Extra Trees Classifier. The DL network is ResNet32. Different input including myocardial ring (DL‐myo), myocardial ring bounding box (DL‐box) and the surrounding tissue without myocardial ring (DL‐nomyo) were tested. We evaluate diagnostic performance through AUC of ROC curve. Statistical Tests: Accuracy, sensitivity, specificity, ROC, and AUC were calculated. Independent t test, Mann–Whitney U‐test and Chi‐square test were adopted for HCM and HHD comparison. P < 0.05 was considered statistically significant. Results: DL‐myo, DL‐box, and DL‐nomyo models showed an AUC (95% confidential interval) of 0.830 (0.702–0.959), 0.766 (0.617–0.915), 0.795 (0.654–0.936) in the testing set. AUC of native T1 and radiomics were 0.545 (0.352–0.738) and 0.800 (0.655–0.944) in the testing set. Data Conclusion: The DL method based on T1 mapping seems capable of discriminating HCM and HHD. Considering diagnostic performance, the DL network outperformed the native T1 method. Compared with radiomics, DL won an advantage for its high specificity and automated working mode. Level of Evidence: 4 Technical Efficacy Stage: 2 [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10531807
Volume :
59
Issue :
3
Database :
Complementary Index
Journal :
Journal of Magnetic Resonance Imaging
Publication Type :
Academic Journal
Accession number :
175304307
Full Text :
https://doi.org/10.1002/jmri.28904