Back to Search Start Over

A Multifunctional and Selective Ionic Flexible Sensor with High Environmental Suitability for Tactile Perception.

Authors :
Yuan, Shen
Bai, Ju
Li, Shengzhao
Ma, Nan
Deng, Shihao
Zhu, Hao
Li, Tie
Zhang, Ting
Source :
Advanced Functional Materials; 2/5/2024, Vol. 34 Issue 6, p1-13, 13p
Publication Year :
2024

Abstract

Inspired by the tactile sensory mechanism of human skin, ionic hydrogels‐derived ionic flexible sensors have attracted much attention since they can produce output signals that match the recognition mode of nerves, showing a potential application in the human‐machine interaction. Unfortunately, the practical sensing properties of ionic hydrogels are restricted by the drawbacks of hydroelastic instability and non‐selective response ability, such as poor mechanical strength, irretentive solvent retaining capacity, and low‐temperature intolerance. Herein, in this study, a novel physical‐crosslink enhanced ionic hydrogel‐PVA/PEG/TA‐MXene‐Na+/Li+ (PPM‐NL) nanocomposite is prepared and shows well comprehensive properties of mechanical strength (400% elongation at break, 0.93 MPa), electrical conductivity (8.1 S m−1), tear resistance, self‐healing and anti‐freezing/drying features (93% water retention after sixty days and frost resistance −27 °C). The PPM‐NL hydrogel‐derived flexible sensor displays selective response behavior to tensile and compressive deformation with high sensitivity (G = 1.12) and rapid response time (only 60 ms). Further, this ionic flexible device is applied to monitor the joint motions of humanoid hands and integrated into manipulators to recognize the thickness and softness of objects, showing superior environmental stability. It can be believed that this ionic flexible sensor will provide inspiration for developing next‐generation biomimetic tactile perception of robots. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
6
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
175282706
Full Text :
https://doi.org/10.1002/adfm.202309626