Back to Search Start Over

Deep Learning Based Recognition of Lepidoptera Insects.

Authors :
Chao He
Pingping Liu
Source :
International Journal of Advanced Network, Monitoring & Controls; 2023, Vol. 8 Issue 4, p20-28, 9p
Publication Year :
2023

Abstract

The successful application of cutting-edge computer vision technology to automatic insect classification has long been a focus of research in insect taxonomy. The results of this research have a wide range of applications in areas such as environmental monitoring, pest diagnosis and epidemiology. However, there is still a gap between the current techniques used in automatic insect classification and the latest computer vision techniques. The research in this paper is conducted on Lepidoptera, a class of insects that are widely infested, including butterflies and moths. The study focuses on the application of deep learning algorithms in image processing of Lepidoptera insects. In order to improve the recognition rate for Lepidoptera insect recognition, this paper uses a detection model based on deep neural networks to realize the recognition of Lepidoptera insects in complex environments. Specifically, the yolov7 algorithm is adopted as the basic model for this experiment, and the reasons for using this model are explained in terms of the splicing of network modules, loss function, positive sample allocation strategy, and the merging of convolution and normalization, respectively. Through experiments, it is proved that the algorithm can effectively improve the gesture recognition rate, the recognition accuracy reaches 79.5%, and the recognition speed is as high as 33.08it/s. [ABSTRACT FROM AUTHOR]

Details

Language :
English
Volume :
8
Issue :
4
Database :
Complementary Index
Journal :
International Journal of Advanced Network, Monitoring & Controls
Publication Type :
Academic Journal
Accession number :
175218700
Full Text :
https://doi.org/10.2478/ijanmc-2023-0073