Back to Search Start Over

Simulated research on distributed hydrological models--a case study of the Daxi Water Basin.

Authors :
Dacheng Wang
Yue Zhou
Xiaolei Zhang
Yalan Liu
Qizhi Teng
Meihong Ma
Wentao Li
Fei Xu
Source :
Frontiers in Earth Science; 2024, p01-09, 9p
Publication Year :
2024

Abstract

Against the backdrop of global climate warming, the issue of flash flood disasters in small watersheds triggered by heavy rainfall is gradually becoming more prominent. Selecting an appropriate hydrological model is crucial for flash flood disaster defense. This article focuses on the Daxi Water Basin in Lianping County, Guangdong Province, as the research area. Firstly, organize the data and subject it to standardization processing. Subsequently, establish the topological relationships within the basin, construct a hydrological model for simulating flood processes in Chinese mountainous regions, and obtain a set of model parameters applicable to the specific basin. The results indicated that: ① the relative errors of flood runoff depth were all less than 7%, with an average of 4.5%; ② the relative errors of peak flow for all events were less than 6%, with an average of 4.2%; ③ peak time errors were all within ±2 h, either earlier or later than the actual peak by 1 h; ④ the Nash-Sutcliffe efficiency coefficient for floods were all greater than 0.8, with an average of 0.86. The research results above will serve as a reference and guidance for flood defense management in the Daxi Water Basin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22966463
Database :
Complementary Index
Journal :
Frontiers in Earth Science
Publication Type :
Academic Journal
Accession number :
175180882
Full Text :
https://doi.org/10.3389/feart.2023.1348730