Back to Search Start Over

PGE2 Potentiates Orai1-Mediated Calcium Entry Contributing to Peripheral Sensitization.

Authors :
Dongyu Wei
Birla, Hareram
Yannong Dou
Yixiao Mei
Xiaodong Huo
Whitehead, Victoria
Osei-Owusu, Patrick
Feske, Stefan
Patafio, Giovanna
Yuanxiang Tao
Huijuan Hu
Source :
Journal of Neuroscience; 1/3/2024, Vol. 44 Issue 1, p1-15, 15p
Publication Year :
2024

Abstract

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2- induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02706474
Volume :
44
Issue :
1
Database :
Complementary Index
Journal :
Journal of Neuroscience
Publication Type :
Academic Journal
Accession number :
175171592
Full Text :
https://doi.org/10.1523/JNEUROSCI.0329-23.2023