Back to Search Start Over

Thermal Performance Analysis of Porous Foam-Assisted Flat-Plate Solar Collectors with Nanofluids.

Authors :
Lin, Xinwei
Xia, Yongfang
Cheng, Zude
Liu, Xianshuang
Fu, Yingmei
Li, Lingyun
Zhou, Wenqin
Source :
Sustainability (2071-1050); Jan2024, Vol. 16 Issue 2, p693, 26p
Publication Year :
2024

Abstract

This study proposed a model of a porous media-assisted flat-plate solar collector (FPSC) using nanofluid flow. The heightened thermal efficiency of FPSC undergoes numerical scrutiny, incorporating various factors for analysis, including aspects like the configuration of the porous block introduced, Darcy number (Da = 10<superscript>−5</superscript>~10<superscript>−2</superscript>), types of nanoparticles, volume fraction (φ), and mixing ratio (φ<subscript>c</subscript>). The numerical findings indicate that the dominant factor in the channel is the global Nusselt number (Nu<subscript>g</subscript>). As the Darcy number rises, there is an improvement in the heat transfer performance within the channel. Simultaneously, for the case of Re = 234, φ = 3%, and φ<subscript>c</subscript> = 100%, the Nu<subscript>g</subscript> in the channel reaches a maximum value of 6.80, and the thermal efficiency can be increased to 70.5% with the insertion of rectangular porous blocks of Da = 10<superscript>−2</superscript>. Finally, the performance evaluation criteria (PEC) are employed for a comprehensive assessment of the thermal performance of FPSC. This analysis considers both the improved heat transfer and the pressure drop in the collector channel. The FPSC registered a maximum PEC value of 1.8 when rectangular porous blocks were inserted under conditions of Da = 10<superscript>−2</superscript> and Re = 234 and the nanofluid concentrations of φ = 3% and φ<subscript>c</subscript> = 100%. The findings can be provided to technically support the future commercial applications of FPSC. The findings may serve as a technical foundation for FPSC in upcoming porous media and support commercial applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20711050
Volume :
16
Issue :
2
Database :
Complementary Index
Journal :
Sustainability (2071-1050)
Publication Type :
Academic Journal
Accession number :
175130155
Full Text :
https://doi.org/10.3390/su16020693