Back to Search Start Over

Using Natural Language Processing to Extract and Classify Symptoms Among Patients with Thyroid Dysfunction.

Authors :
Sy HWANG
REDDY, Sujatha
WAINWRIGHT, Katherine
SCHRIVER, Emily
CAPPOLA, Anne
MOWERY, Danielle
Source :
Medinfo; 2023, Vol. 310, p614-618, 5p
Publication Year :
2023

Abstract

In the United States, more than 12% of the population will experience thyroid dysfunction. Patient symptoms often reported with thyroid dysfunction include fatigue and weight change. However, little is understood about the relationship between these symptoms documented in the outpatient setting and ordering patterns for thyroid testing among various patient groups by age and sex. We developed a natural language processing and deep learning pipeline to identify patientreported outcomes of weight change and fatigue among patients with a thyroid stimulating hormone test. We built upon prior works by comparing 5 open-source, Bidirectional Encoder Representations from Transformers (BERT) to determine which models could accurately identify these symptoms from clinical texts. For both fatigue (f) and weight change (wc), Bio_ClinicalBERT achieved the highest F1-score (f: 0.900; wc: 0.906) compared BERT (f: 0.899; wc: 0.890), DistilBERT (f: 0.852; wc: 0.912), Biomedical RoBERTa (f: 0.864; wc: 0.904), and PubMedBERT (f: 0.882; wc: 0.892). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15696332
Volume :
310
Database :
Complementary Index
Journal :
Medinfo
Publication Type :
Conference
Accession number :
175124531
Full Text :
https://doi.org/10.3233/SHTI231038