Back to Search
Start Over
MRI Detection and Therapeutic Enhancement of Ferumoxytol Internalization in Glioblastoma Cells.
- Source :
- Nanomaterials (2079-4991); Jan2024, Vol. 14 Issue 2, p189, 10p
- Publication Year :
- 2024
-
Abstract
- Recently, the FDA-approved iron oxide nanoparticle, ferumoxytol, has been found to enhance the efficacy of pharmacological ascorbate (AscH<superscript>−</superscript>) in treating glioblastoma, as AscH<superscript>−</superscript> reduces the Fe<superscript>3+</superscript> sites in the nanoparticle core. Given the iron oxidation state specificity of T2* relaxation mapping, this study aims to investigate the ability of T2* relaxation to monitor the reduction of ferumoxytol by AscH<superscript>−</superscript> with respect to its in vitro therapeutic enhancement. This study employed an in vitro glioblastoma MRI model system to investigate the chemical interaction of ferumoxytol with T<subscript>2</subscript>* mapping. Lipofectamine was utilized to facilitate ferumoxytol internalization and assess intracellular versus extracellular chemistry. In vitro T<subscript>2</subscript>* mapping successfully detected an AscH<superscript>−</superscript>-mediated reduction of ferumoxytol (25.6 ms versus 2.8 ms for FMX alone). The T<subscript>2</subscript>* relaxation technique identified the release of Fe<superscript>2+</superscript> from ferumoxytol by AscH<superscript>−</superscript> in glioblastoma cells. However, the high iron content of ferumoxytol limited T2* ability to differentiate between the external and internal reduction of ferumoxytol by AscH<superscript>−</superscript> (ΔT<subscript>2</subscript>* = +839% for external FMX and +1112% for internal FMX reduction). Notably, the internalization of ferumoxytol significantly enhances its ability to promote AscH<superscript>−</superscript> toxicity (dose enhancement ratio for extracellular FMX = 1.16 versus 1.54 for intracellular FMX). These data provide valuable insights into the MR-based nanotheranostic application of ferumoxytol and AscH<superscript>−</superscript> therapy for glioblastoma management. Future developmental efforts, such as FMX surface modifications, may be warranted to enhance this approach further. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20794991
- Volume :
- 14
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Nanomaterials (2079-4991)
- Publication Type :
- Academic Journal
- Accession number :
- 175080632
- Full Text :
- https://doi.org/10.3390/nano14020189