Back to Search Start Over

Carbon Dioxide Uptake Estimation for Spanish Cement-Based Materials.

Authors :
Sanjuán, Natalia
Mora, Pedro
Sanjuán, Miguel Ángel
Zaragoza, Aniceto
Source :
Materials (1996-1944); Jan2024, Vol. 17 Issue 2, p326, 15p
Publication Year :
2024

Abstract

The Intergovernmental Panel on Climate Change (IPCC), which is the United Nations body for assessing the science related to climate change, has recently recognized the natural carbonation process as a way of carbon offsetting with mortar and concrete. Accordingly, this activity could be recognized as a carbon removal process for which certification should be granted. The aim of the certification of carbon removal is to promote the development of adequate and efficient new carbon removal processes. Therefore, the main objective of this study is to provide reliable results on carbon dioxide uptake by cement-based materials in Spain. Yearly, greenhouse gas emissions are reported to the United Nations Framework Convention on Climate Change (UNFCCC) by each country, and the natural carbonation should be added up to the carbon accounting. Therefore, natural carbonation should be included in the IPCC Guidelines for National Greenhouse Gas Inventories, and such accounting information should be made available promptly to the national regulatory authorities. This paper provides the results of carbon dioxide uptake by Spanish cement-based materials from 1990 to 2020 by using an easy method of estimating the net carbon dioxide emissions (simplified method) considering the carbon dioxide released by the calcination during clinker production (process emissions). The outcome of this study reveals that there was 93,556,000 tons of carbon dioxide uptake by the mortar and concrete manufactured in Spain from 1990 to 2020. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
2
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
175076884
Full Text :
https://doi.org/10.3390/ma17020326