Back to Search Start Over

DMCNet-Pro: A Model-Driven Multi-Pilot Convolution Neural Network for MIMO-OFDM Receivers.

Authors :
Li, Pengyuan
Zhu, Tianlin
Xin, Yutong
Yuan, Gang
Yu, Xiong
Lu, Zejian
Liu, Zili
Yan, Qing
Source :
Electronics (2079-9292); Jan2024, Vol. 13 Issue 2, p330, 17p
Publication Year :
2024

Abstract

Nowadays, wireless communication technology is evolving towards high data rates, a low latency, and a high throughput to meet increasingly complex business demands. Key technologies in this direction include multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM). This research is based on our previous work DMCNet. In this article, we focus on studying the deep learning (DL) application of neural networks to solve the reception of single-antenna OFDM signals. Specifically, in multi-antenna scenarios, the channel model is more complex compared to single-antenna cases. By leveraging the characteristics of DL, such as automatic learning of parameters using deep neural networks, we treat the reception process of MIMO-OFDM signals as a black box and utilize neural networks to accomplish the signal reception task. Moreover, we propose a data-driven multi-pilot convolution neural network for MIMO-OFDM receivers (DMCNet). By incorporating complex convolution and complex fully connected structures, we design a receiver network to recover the transmitted signals from the received signals. We validate the accuracy and robustness of DMCNet under different channel conditions, comparing the bit error rates with different schemes. Additionally, we discuss the factors influencing various channel effects. At the same time, we also propose a model-driven scheme, DMCNet-pro, which has a higher accuracy and fewer parameters in some scenarios. The experimental results demonstrate that the DL-based reception scheme exhibits promising feasibility in terms of accuracy and interference resistance when compared to traditional approaches. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
2
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
175059024
Full Text :
https://doi.org/10.3390/electronics13020330