Back to Search Start Over

Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases.

Authors :
Uribe-Carretero, Elisabet
Rey, Verónica
Fuentes, Jose Manuel
Tamargo-Gómez, Isaac
Source :
Biology (2079-7737); Jan2024, Vol. 13 Issue 1, p34, 34p
Publication Year :
2024

Abstract

Simple Summary: This article focuses on the impairment of lysosomes in the context of lysosomal storage disorders. Lysosomal storage disorders are a group of rare diseases with different causes united by the malfunctioning of the lysosomes. Lysosomes are intracellular vesicles, and their main function is to decompose intracellular waste in a process known as autophagy. Besides this function, lysosomes participate in a wide range of essential mechanisms aimed to keep the internal balance within our cells, which is called homeostasis. Maintaining homeostasis is a fundamental goal of all biological systems, from the simplest to the most complex, and is essential for proper functioning. Many of these disorders are originated from single-gene mutations. This provides a valuable starting point for scientists to trace the path from a single molecule to disease symptoms across the complexity of living organisms. The purpose of this paper is to provide insights from the molecular to the clinical level on this group of diseases, focusing on changes in autophagy and the latest therapeutic approaches in the field. Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20797737
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Biology (2079-7737)
Publication Type :
Academic Journal
Accession number :
175058730
Full Text :
https://doi.org/10.3390/biology13010034