Back to Search Start Over

Wi-Gitation: Replica Wi-Fi CSI Dataset for Physical Agitation Activity Recognition.

Authors :
Sharma, Nikita
Klein Brinke, Jeroen
Braakman Jansen, L. M. A.
Havinga, Paul J. M.
Le, Duc V.
Source :
Data (2306-5729); Jan2024, Vol. 9 Issue 1, p9, 26p
Publication Year :
2024

Abstract

Agitation is a commonly found behavioral condition in persons with advanced dementia. It requires continuous monitoring to gain insights into agitation levels to assist caregivers in delivering adequate care. The available monitoring techniques use cameras and wearables which are distressful and intrusive and are thus often rejected by older adults. To enable continuous monitoring in older adult care, unobtrusive Wi-Fi channel state information (CSI) can be leveraged to monitor physical activities related to agitation. However, to the best of our knowledge, there are no realistic CSI datasets available for facilitating the classification of physical activities demonstrated during agitation scenarios such as disturbed walking, repetitive sitting–getting up, tapping on a surface, hand wringing, rubbing on a surface, flipping objects, and kicking. Therefore, in this paper, we present a public dataset named Wi-Gitation. For Wi-Gitation, the Wi-Fi CSI data were collected with twenty-three healthy participants depicting the aforementioned agitation-related physical activities at two different locations in a one-bedroom apartment with multiple receivers placed at different distances (0.5–8 m) from the participants. The validation results on the Wi-Gitation dataset indicate higher accuracies ( F 1 -Scores ≥ 0.95 ) when employing mixed-data analysis, where the training and testing data share the same distribution. Conversely, in scenarios where the training and testing data differ in distribution (i.e., leave-one-out), the accuracies experienced a notable decline ( F 1 -Scores ≤ 0.21 ). This dataset can be used for fundamental research on CSI signals and in the evaluation of advanced algorithms developed for tackling domain invariance in CSI-based human activity recognition. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23065729
Volume :
9
Issue :
1
Database :
Complementary Index
Journal :
Data (2306-5729)
Publication Type :
Academic Journal
Accession number :
175052032
Full Text :
https://doi.org/10.3390/data9010009