Back to Search Start Over

Accurate prediction of the optical properties of nanoalloys with both plasmonic and magnetic elements.

Authors :
Coviello, Vito
Badocco, Denis
Pastore, Paolo
Fracchia, Martina
Ghigna, Paolo
Martucci, Alessandro
Forrer, Daniel
Amendola, Vincenzo
Source :
Nature Communications; 1/27/2024, Vol. 15 Issue 1, p1-13, 13p
Publication Year :
2024

Abstract

The alloying process plays a pivotal role in the development of advanced multifunctional plasmonic materials within the realm of modern nanotechnology. However, accurate in silico predictions are only available for metal clusters of just a few nanometers, while the support of modelling is required to navigate the broad landscape of components, structures and stoichiometry of plasmonic nanoalloys regardless of their size. Here we report on the accurate calculation and conceptual understanding of the optical properties of metastable alloys of both plasmonic (Au) and magnetic (Co) elements obtained through a tailored laser synthesis procedure. The model is based on the density functional theory calculation of the dielectric function with the Hubbard-corrected local density approximation, the correction for intrinsic size effects and use of classical electrodynamics. This approach is built to manage critical aspects in modelling of real samples, as spin polarization effects due to magnetic elements, short-range order variability, and size heterogeneity. The method provides accurate results also for other magnetic-plasmonic (Au-Fe) and typical plasmonic (Au-Ag) nanoalloys, thus being available for the investigation of several other nanomaterials waiting for assessment and exploitation in fundamental sectors such as quantum optics, magneto-optics, magneto-plasmonics, metamaterials, chiral catalysis and plasmon-enhanced catalysis. The optical properties of nanoalloys are complex and difficult to describe. Here, the authors use density functional and Mie theory to calculate the extinction of Au-Co and other nanoalloys of interest for quantum optics, magnetooptics, catalysis, and metamaterials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
175021873
Full Text :
https://doi.org/10.1038/s41467-024-45137-x