Back to Search
Start Over
Proof of the Kresch-Tamvakis conjecture.
- Source :
- Proceedings of the American Mathematical Society; Mar2024, Vol. 152 Issue 3, p1265-1277, 13p
- Publication Year :
- 2024
-
Abstract
- In this paper we resolve a conjecture of Kresch and Tamvakis [Duke Math. J. 110 (2001), pp. 359–376]. Our result is the following. Theorem : For any positive integer D and any integers i,j (0\leq i,j \leq D), \; the absolute value of the following hypergeometric series is at most 1: \begin{equation*} {_4F_3} \left [ \begin {array}{c} -i, \; i+1, \; -j, \; j+1 \\ 1, \; D+2, \; -D \end{array} ; 1 \right ]. \end{equation*} To prove this theorem, we use the Biedenharn-Elliott identity, the theory of Leonard pairs, and the Perron-Frobenius theorem. [ABSTRACT FROM AUTHOR]
- Subjects :
- LOGICAL prediction
INTEGERS
MATHEMATICS
ABSOLUTE value
Subjects
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 152
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 175006922
- Full Text :
- https://doi.org/10.1090/proc/16678