Back to Search Start Over

NanoDeep: a deep learning framework for nanopore adaptive sampling on microbial sequencing.

Authors :
Lin, Yusen
Zhang, Yongjun
Sun, Hang
Jiang, Hang
Zhao, Xing
Teng, Xiaojuan
Lin, Jingxia
Shu, Bowen
Sun, Hao
Liao, Yuhui
Zhou, Jiajian
Source :
Briefings in Bioinformatics; Jan2024, Vol. 25 Issue 1, p1-11, 11p
Publication Year :
2024

Abstract

Nanopore sequencers can enrich or deplete the targeted DNA molecules in a library by reversing the voltage across individual nanopores. However, it requires substantial computational resources to achieve rapid operations in parallel at read-time sequencing. We present a deep learning framework, NanoDeep, to overcome these limitations by incorporating convolutional neural network and squeeze and excitation. We first showed that the raw squiggle derived from native DNA sequences determines the origin of microbial and human genomes. Then, we demonstrated that NanoDeep successfully classified bacterial reads from the pooled library with human sequence and showed enrichment for bacterial sequence compared with routine nanopore sequencing setting. Further, we showed that NanoDeep improves the sequencing efficiency and preserves the fidelity of bacterial genomes in the mock sample. In addition, NanoDeep performs well in the enrichment of metagenome sequences of gut samples, showing its potential applications in the enrichment of unknown microbiota. Our toolkit is available at https://github.com/lysovosyl/NanoDeep. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14675463
Volume :
25
Issue :
1
Database :
Complementary Index
Journal :
Briefings in Bioinformatics
Publication Type :
Academic Journal
Accession number :
174954036
Full Text :
https://doi.org/10.1093/bib/bbad499