Back to Search
Start Over
An Injectable Thermosensitive Hydrogel Containing Resveratrol and Dexamethasone‐Loaded Carbonated Hydroxyapatite Microspheres for the Regeneration of Osteoporotic Bone Defects.
- Source :
- Small Methods; Jan2024, Vol. 8 Issue 1, p1-17, 17p
- Publication Year :
- 2024
-
Abstract
- Bone defects in osteoporosis usually present excessive reactive oxygen species (ROS), abnormal inflammation levels, irregular shapes and impaired bone regeneration ability; therefore, osteoporotic bone defects are difficult to repair. In this study, an injectable thermosensitive hydrogel poly (D, L‐lactide)‐poly (ethylene glycol)‐ poly (D, L‐lactide) (PLEL) system containing resveratrol (Res) and dexamethasone (DEX) is designed to create a microenvironment conducive to osteogenesis in osteoporotic bone defects. This PLEL hydrogel is injected and filled irregular defect areas and achieving a rapid sol‐gel transition in situ. Res has a strong anti‐inflammatory effects that can effectively remove excess free radicals at the damaged site, guide macrophage polarization to the M2 phenotype, and regulate immune responses. Additionally, DEX can promote osteogenic differentiation. In vitro experiments showed that the hydrogel effectively promoted osteogenic differentiation of mesenchymal stem cells, removed excess intracellular ROS, and regulated macrophage polarization to reduce inflammatory responses. In vivo experiments showed that the hydrogel promoted osteoporotic bone defect regeneration and modulated immune responses. Overall, this study confirmed that the hydrogel can treat osteoporotic bone defects by synergistically modulating bone damage microenvironment, alleviating inflammatory responses, and promoting osteogenesis; thus, it represents a promising drug delivery strategy to repair osteoporotic bone defects. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23669608
- Volume :
- 8
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Small Methods
- Publication Type :
- Academic Journal
- Accession number :
- 174881078
- Full Text :
- https://doi.org/10.1002/smtd.202300843