Back to Search
Start Over
Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach.
- Source :
- Nature Communications; 1/12/2024, Vol. 15 Issue 1, p1-13, 13p
- Publication Year :
- 2024
-
Abstract
- The World Health Organization has a goal of universal drug susceptibility testing for patients with tuberculosis. However, molecular diagnostics to date have focused largely on first-line drugs and predicting susceptibilities in a binary manner (classifying strains as either susceptible or resistant). Here, we used a multivariable linear mixed model alongside whole genome sequencing and a quantitative microtiter plate assay to relate genomic mutations to minimum inhibitory concentration (MIC) in 15,211 Mycobacterium tuberculosis clinical isolates from 23 countries across five continents. We identified 492 unique MIC-elevating variants across 13 drugs, as well as 91 mutations likely linked to hypersensitivity. Our results advance genetics-based diagnostics for tuberculosis and serve as a curated training/testing dataset for development of drug resistance prediction algorithms. Molecular diagnostics for tuberculosis have focused on predicting drug susceptibilities in a binary manner (i.e., strains are either susceptible or resistant). Here, CRyPTIC Consortium researchers use whole genome sequencing and a quantitative assay to identify associations between genomic mutations and minimum inhibitory concentrations in over 15,000 Mycobacterium tuberculosis clinical isolates. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 174799962
- Full Text :
- https://doi.org/10.1038/s41467-023-44325-5