Back to Search Start Over

Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model.

Authors :
Lee, Pei-Hsi
Liao, Shih-Lung
Source :
Mathematics (2227-7390); Jan2024, Vol. 12 Issue 1, p74, 14p
Publication Year :
2024

Abstract

Control charts with conditional expected value (CEV) can be used with novel statistical techniques to monitor the means of moderately and lowly censored data. In recent years, machine learning and deep learning have been successfully combined with quality technology to solve many process control problems. This paper proposes a residual control chart combining a convolutional neural network (CNN) and support vector regression (SVR) for type-I censored data with the Weibull model. The CEV and exponentially weighted moving average (EWMA) statistics are used to generate training data for the CNN and SVR. The average run length shows that the proposed chart approach outperforms the traditional EWMA CEV chart approach in various shift sizes and censored rates. The proposed chart approach is suitable to be used in detecting small shift size for highly censored data. An illustrative example presents the application of the proposed method in an electronics industry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
174722017
Full Text :
https://doi.org/10.3390/math12010074