Back to Search Start Over

Innovative Power Smoothing Technique for Enhancing Renewable Integration in Insular Power Systems Using Electric Vehicle Charging Stations.

Authors :
Villa-Ávila, Edisson
Arévalo, Paul
Ochoa-Correa, Danny
Iñiguez-Morán, Vinicio
Jurado, Francisco
Source :
Applied Sciences (2076-3417); Jan2024, Vol. 14 Issue 1, p375, 19p
Publication Year :
2024

Abstract

The reliance on imported fuels for electricity generation and internal transportation in insular electrical systems has historically posed a significant challenge due to their geographic isolation. The vulnerability of insular ecosystems to pollution has driven the need to transition toward renewable energy sources. Despite their inherent variability, wind and solar energy have gained acceptance. Integrating these renewable technologies into insular grids presents technical challenges that impact the quality of the power supply, particularly with the increasing presence of electric vehicles. Nevertheless, the batteries of these vehicles provide an opportunity to enhance network performance. This article introduces an innovative power smoothing technique that utilizes electric vehicle batteries to optimize self-consumption and reduce power fluctuations. The proposed method is an enhanced version of the ramp-rate energy smoothing method, incorporating adaptability through real-time control of the ramp-rate using fuzzy logic. It employs an aggregated model of lithium-ion batteries with a bidirectional power electronic converter. Experimental validation is carried out in the Micro-Grid Laboratory of the University of Cuenca, Ecuador. Experimental results demonstrate a significant 14% reduction in energy generation variability, resulting in a more stable electrical supply profile. Additionally, there is a marginal improvement in energy delivery, with an additional injection of 0.23 kWh compared to scenarios without the participation of electric vehicle batteries in power smoothing tasks. These findings support the effectiveness of the proposed approach in optimizing the integration of intermittent renewable generators and electric vehicle charging in insular energy systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
174715508
Full Text :
https://doi.org/10.3390/app14010375