Back to Search Start Over

Review on Zinc Isotopes in River Systems: Distribution and Application.

Authors :
Ding, Ziyang
Han, Guilin
Qu, Rui
Liu, Jinke
Wang, Peng
Source :
Water (20734441); Jan2024, Vol. 16 Issue 1, p87, 16p
Publication Year :
2024

Abstract

Zinc (Zn) is an essential trace element widely present in rivers and plays a crucial role in ecosystems. Human activities have led to the extensive migration and dissemination of Zn in the environment. When the accumulation of Zn in rivers reaches excessive levels, it transforms into a potentially harmful contaminant. Consequently, tracing Zn's origin by its isotope ratios (δ<superscript>66</superscript>Zn) from natural and anthropogenic sources is essential for the management of and safeguarding against river pollution and comprehending Zn behavior in rivers as well. This review presents the advancements in Zn isotope research in river environments, including a summary of Zn isotope measurement, the distribution and controlling factors (mineral adsorption, precipitation, and biological effects) of Zn isotopes, and the applications of Zn isotopes in rivers. The median δ<superscript>66</superscript>Zn values for uncontaminated river water and suspended particulate matter (SPM) were 0.37‰ and 0.22‰, respectively, close to the bulk silicate Earth (BSE) value of 0.28 ± 0.05‰. With respect to the contaminated river, δ<superscript>66</superscript>Zn falls within −0.73‰ to 1.77‰, with it being heavily influenced by anthropogenic sources, such as the electroplating and metal processing industries. Apart from contamination identification, this review summarizes the river material exchange process and the δ<superscript>66</superscript>Zn values of rainwater (−0.2‰~0.38‰), groundwater (−0.13‰~1.4‰), lake water (−0.66‰~0.21‰), and seawater (−1.1‰~0.9‰), which facilitates a holistic understanding of the Zn cycle and isotope fractionation in the river system. In conclusion, Zn isotopes are an effective tool for tracing pollution sources and Zn migration processes, with enormous unexplored potential. Therefore, this review finally summarizes some challenges and future directions in current research on Zn isotopes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734441
Volume :
16
Issue :
1
Database :
Complementary Index
Journal :
Water (20734441)
Publication Type :
Academic Journal
Accession number :
174715029
Full Text :
https://doi.org/10.3390/w16010087