Back to Search
Start Over
Concentration and source changes of HONO during the COVID-19 lockdown in Beijing.
- Source :
- EGUsphere; 1/9/2024, p1-41, 41p
- Publication Year :
- 2024
-
Abstract
- Nitrous acid (HONO) is an important precursor of OH radicals which affects not only the sinks of primary air pollutants but also the formation of secondary air pollutants, whereas its source closure in the atmosphere is still controversial due to a lack of experiment validation. In this study, the HONO budget in Beijing has been analyzed and validated through the coronavirus disease (COVID-19) lockdown event, which resulted in the largest changes in air pollutant emissions in the history of modern atmospheric chemistry. A home-made Water-based Long-Path Absorption Photometer (LOPAP) along with other instruments were used to measure the HONO and related pollutants from January 1, 2020 to March 6, 2020, which covered the Chinese New Year (CNY) and the COVID-19 lockdown. The average concentration of HONO decreased from 0.97 ± 0.74 ppb before CNY to 0.53 ± 0.44 ppb during the COVID-19 lockdown, accompanied by a sharp drop of NO<subscript>x</subscript> and the greatest drop of NO (around 87 %). HONO budget analysis suggests that vehicle emissions were the most important source of HONO during the nighttime (53 %) before CNY, well supported by the decline of their contribution to HONO during the COVID-19 lockdown. We found that the heterogeneous conversion of NO<subscript>2</subscript> on ground surfaces was an important nighttime source of HONO (31 %), while that on aerosol surfaces was a minor source (2 %). Nitrate photolysis became the most important daytime source during the COVID-19 lockdown compared with that before CNY, resulting from the combined effect of the increase in nitrate and the decrease in NO. Our results indicate that reducing vehicle emissions should be an effective measure for alleviating HONO in Beijing. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- Database :
- Complementary Index
- Journal :
- EGUsphere
- Publication Type :
- Academic Journal
- Accession number :
- 174690938
- Full Text :
- https://doi.org/10.5194/egusphere-2023-3139