Back to Search
Start Over
Dataset for Automatic Region-based Coronary Artery Disease Diagnostics Using X-Ray Angiography Images.
- Source :
- Scientific Data; 1/3/2024, Vol. 11 Issue 1, p1-9, 9p
- Publication Year :
- 2024
-
Abstract
- X-ray coronary angiography is the most common tool for the diagnosis and treatment of coronary artery disease. It involves the injection of contrast agents into coronary vessels using a catheter to highlight the coronary vessel structure. Typically, multiple 2D X-ray projections are recorded from different angles to improve visualization. Recent advances in the development of deep-learning-based tools promise significant improvement in diagnosing and treating coronary artery disease. However, the limited public availability of annotated X-ray coronary angiography image datasets presents a challenge for objective assessment and comparison of existing tools and the development of novel methods. To address this challenge, we introduce a novel ARCADE dataset with 2 objectives: coronary vessel classification and stenosis detection. Each objective contains 1500 expert-labeled X-ray coronary angiography images representing: i) coronary artery segments; and ii) the locations of stenotic plaques. These datasets will serve as a benchmark for developing new methods and assessing existing approaches for the automated diagnosis and risk assessment of coronary artery disease. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20524463
- Volume :
- 11
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Scientific Data
- Publication Type :
- Academic Journal
- Accession number :
- 174580615
- Full Text :
- https://doi.org/10.1038/s41597-023-02871-z