Back to Search Start Over

Machine learning-enabled autonomous operation for atomic force microscopes.

Authors :
Kang, Seongseok
Park, Junhong
Lee, Manhee
Source :
Review of Scientific Instruments; Dec2023, Vol. 94 Issue 12, p1-8, 8p
Publication Year :
2023

Abstract

The use of scientific instruments generally requires prior knowledge and skill on the part of operators, and thus, the obtained results often vary with different operators. The autonomous operation of instruments producing reproducible and reliable results with little or no operator-to-operator variation could be of considerable benefit. Here, we demonstrate the autonomous operation of an atomic force microscope using a machine learning-based object detection technique. The developed atomic force microscope was able to autonomously perform instrument initialization, surface imaging, and image analysis. Two cameras were employed, and a machine-learning algorithm of region-based convolutional neural networks was implemented, to detect and recognize objects of interest and to perform self-calibration, alignment, and operation of each part of the instrument, as well as the analysis of obtained images. Our machine learning-based approach could be generalized to apply to various types of scanning probe microscopes and other scientific instruments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00346748
Volume :
94
Issue :
12
Database :
Complementary Index
Journal :
Review of Scientific Instruments
Publication Type :
Academic Journal
Accession number :
174561148
Full Text :
https://doi.org/10.1063/5.0172682