Back to Search Start Over

Ultrasonic-Vibration-Assisted Waterjet Drilling of [0/45/−45/90] 2s Carbon-Fiber-Reinforced Polymer Laminates.

Authors :
Liao, Yinghao
Liu, Xin
Zhao, Changxi
Wang, Bing
Zheng, Liyan
Hao, Xiaoming
Yao, Longxu
Wang, Dian
Source :
Micromachines; Dec2023, Vol. 14 Issue 12, p2209, 14p
Publication Year :
2023

Abstract

The pure waterjet (WJ) drilling process of carbon-fiber-reinforced polymer (CFRP) laminates causes damage, such as tears and delamination, leading to poor-quality hole-wall. Ultrasonic-vibration-assisted technology can improve the quality of hole walls and repair such damage, particularly the delamination of CFRP laminates. In this study, we conducted a numerical and experimental investigation of a high-pressure pure WJ drilling process of CFRP laminates performed using ultrasonic vibration to improve the delamination phenomena of the pure WJ drilling process. An explicit dynamic model using the smoothed particle hydrodynamics method was employed to simulate the ultrasonic-vibration-assisted WJ drilling of CFRP laminates and ascertain the optimal drilling performance. Thereafter, WJ drilling experiments were conducted to verify the numerical simulation. The results illustrate that the employment of ultrasonic vibration significantly increased the material removal rate by approximately 20%. Moreover, the water-wedging action that induces the propagation of delamination was weakened with an increase in the amplitude of the ultrasonic vibration. The hole-wall quality was optimal with the following drilling parameters: amplitude, 10 μm; frequency, 20 kHz; and WJ velocity, 900 m/s. The delamination zone length was only 0.19 mm and was reduced by 85.6% compared with the values obtained using non-assisted WJ drilling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2072666X
Volume :
14
Issue :
12
Database :
Complementary Index
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
174465206
Full Text :
https://doi.org/10.3390/mi14122209