Back to Search Start Over

A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions.

Authors :
Hassan, Sharmarke
Dhimish, Mahmoud
Source :
Solar; Dec2023, Vol. 3 Issue 4, p663-683, 21p
Publication Year :
2023

Abstract

Detection of cracks in solar photovoltaic (PV) modules is crucial for optimal performance and long-term reliability. The development of convolutional neural networks (CNNs) has significantly improved crack detection, offering improved accuracy and efficiency over traditional methods. This paper presents a comprehensive review and comparative analysis of CNN-based approaches for crack detection in solar PV modules. The review discusses various CNN architectures, including custom-designed networks and pre-trained models, as well as data-augmentation techniques and ensemble learning methods. Additionally, challenges related to limited dataset sizes, generalizability across different solar panels, interpretability of CNN models, and real-time detection are discussed. The review also identifies opportunities for future research, such as the need for larger and more diverse datasets, model interpretability, and optimized computational speed. Overall, this paper serves as a valuable resource for researchers and practitioners interested in using CNNs for crack detection in solar PV modules. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26739941
Volume :
3
Issue :
4
Database :
Complementary Index
Journal :
Solar
Publication Type :
Academic Journal
Accession number :
174460532
Full Text :
https://doi.org/10.3390/solar3040036