Back to Search Start Over

Oxidation of Alloy X-750 with Low Iron Content in Simulated BWR Environment.

Authors :
Tuzi, Silvia
Stiller, Krystyna
Thuvander, Mattias
Source :
Journal of Nuclear Engineering (JNE); Dec2023, Vol. 4 Issue 4, p711-722, 12p
Publication Year :
2023

Abstract

This paper presents an investigation of the oxidation of Alloy X-750 containing 5 wt% iron in a simulated boiling water reactor (BWR) environment. The specimens were exposed by a water jet (10 m/s) at 286 °C for durations ranging from 2 to 840 h, and the development of the oxide microstructure was mainly studied using electron microscopy. The results showed that the oxide scale consists of blocky crystals of trevorite on top of a porous inner layer rich in Ni and Cr. After the longest exposure time, the trevorite crystals completely covered the specimen surface. The study further revealed that the rate at which the oxide grew and the metal dissolved both decreased with time, and the metal thinning process appeared to be sub-parabolic. Given the significant variation in iron content in the X-750 specification, the influence of this element on the material's corrosion performance in BWR was examined by comparing the results from this investigation with those from previous work on material containing 8 wt% Fe. The study demonstrates that the oxide growth, metal dissolution and metal thinning were slower in the material with a higher iron content, indicating the importance of this element in limiting the degradation of Alloy X-750 in BWR environments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26734362
Volume :
4
Issue :
4
Database :
Complementary Index
Journal :
Journal of Nuclear Engineering (JNE)
Publication Type :
Academic Journal
Accession number :
174440567
Full Text :
https://doi.org/10.3390/jne4040044