Back to Search Start Over

An Ultra Low Power Integer-N PLL with a High-Gain Sampling Phase Detector for IOT Applications in 65 nm CMOS.

Authors :
Tavakoli, Javad
Lavasani, Hossein Miri
Sheikhaei, Samad
Source :
Journal of Low Power Electronics & Applications; Dec2023, Vol. 13 Issue 4, p65, 17p
Publication Year :
2023

Abstract

A low-power and low-jitter 1.2 GHz Integer-N PLL (INPLL) is designed in a 65 nm standard CMOS process. A novel high-gain sampling phase detector (PD), which takes advantage of a transconductance (Gm) cell to boost the gain, is developed to increase the phase detection gain by ~100× compared to the Phase-Frequency Detectors (PFDs) used in conventional PLLs. Using this high detection gain, the noise contribution of the PFD and Charge Pump (CP), reference clock, and dividers on the PLL output is minimized, enabling low output jitter at low power, even when using low-frequency reference clocks. To provide a sufficient frequency locking range, an auxiliary frequency-locked loop (AFLL) is embedded within the INPLL. An integrated Lock Detector (LD) helps detect the INPLL locked state and disables the AFLL to save on power consumption and minimize its impact on the INPLL jitter. The proposed INPLL layout measures 700 µm × 350 µm, consumes 350 µW, and exhibits an integrated phase noise (IPN) of −37 dBc (from 10 kHz to 10 MHz), equivalent to 2.9 ps rms jitter, while keeping the spur level 64 dBc lower, resulting in jitter figure of Merit ( F o M j i t t e r ) ~−236 dB. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799268
Volume :
13
Issue :
4
Database :
Complementary Index
Journal :
Journal of Low Power Electronics & Applications
Publication Type :
Academic Journal
Accession number :
174437717
Full Text :
https://doi.org/10.3390/jlpea13040065