Back to Search Start Over

Cyclic Behavior of the Column-Tree Moment Connection with Weakened Plates: A Numerical Approach.

Authors :
Matthews, Pablo
Núñez, Eduardo
Source :
Buildings (2075-5309); Dec2023, Vol. 13 Issue 12, p2908, 28p
Publication Year :
2023

Abstract

The use of column-tree connections is common in controlled shop environments due to their cost-effectiveness in achieving ductile welds. Field bolts are also easy to install and inspect. However, there is currently no prequalification available for these connections, their performance is not fully understood, and the cost of aftermath repairs is still a major concern for owners. In this research, analytical and numerical studies were performed to assess the cyclic behavior considering the effects of the bolted splice location, bolt slippage, and splice plate thickness. Fourteen numerical models using the finite element method in ANSYS software were analyzed to evaluate the nonlinear behavior of moment connection configurations in terms of the strength, stiffness, ductility, energy dissipation, and overall cyclic response. The results showed that appropriately proportioned bolted splice connections can meet the requirements for prequalified moment connections. The models complied with the criteria established in AISC 358 and achieved flexural resistance that was higher than 80% of the beam plastic moment at 4% of the interstory drift ratio. The weakened plates concentrated the inelastic action, which allowed us to prevent the brittle behavior and damage to the column, welding, and other components of the moment connection. Complex geometries or specially fabricated parts were not required, providing a cost-effective way to control seismic-related damage. Also, required repairs are based on the replacement of standard parts, reducing operational detentions in facilities. Finally, the moment connection studied is classified as partially restrained (PR) according to the requirements established in AISC 360. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20755309
Volume :
13
Issue :
12
Database :
Complementary Index
Journal :
Buildings (2075-5309)
Publication Type :
Academic Journal
Accession number :
174404467
Full Text :
https://doi.org/10.3390/buildings13122908